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Abstract

An exact expression for the dipole radial integral of
hydrogen has been given by Gordon [Ann. Phys. 2
(1929) 1031]. It contains two hypergeometric
functions F(a,b;c;x), which are difficult to
calculate directly, when the (negative) integers a,
are large, as in the case of high Rydberg states of
hydrogenic ions. We have derived a simple method |[D.
Hoang-Binh, Astron.Astrophys. 238 (1990) 449], using
a recurrence relation to calculate exactly F,
starting from two initial values, which are very easy
to compute. We present here a numerical code using
this method, to compute exact hydrogenic oscillator
strengths, Einstein coefficients, and lifetimes.
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The dipole moment corresponding to the transition
from the upper state (n,1l) to the lower state (n’,1’)
of a hydrogenic ion of nuclear charge Z is (see e.g.

[31)

R(n,1;n’,1’)= [ P,;(r) r’ P, i (r) dr,
the integration range being (0,infinity),

where P,;(r) and P, ; (r) are the radial wave
functions of the states (n,l1) and (n’,1’),
respectively. Gordon [1] has derived an exact
expression for this radial integral,

R(n,1;n’,1’)=(-1)"""[4(21-1) ][ (n+1)!
(n’+1-1)!/(n-1-1) ! (n’-1) !]*?

X (4nn/)l+1 (n_n/)n+n’—21—2 (n+n/)—n—n’
x{F(-n+l1+1,-n’+1;21;-4nn’/[n-n"’]?)
-(n-n’)?(n+n’)?F(-n+1-1,-n’+1;21; -4nn’/[n-
n’]?)} (1)

However, it is rather difficult to calculate the
hypergeometric function

F(a,b;c;x)=1+[ab/c(1!) ] X+
[a(a+l)b(b+1)/c(c+1) (2!) ]+ ..

when n and n’ are large, as in the case of Rydberg
states.

Many tables have been published. However, they are
either limited to rather small values of n, n’[3-5],
or restricted to values of total oscillator
strengths, without partition with respect to the
orbital quantum number [6]. They do not cover the
whole range of dipole transitions encountered in
physics and astronomy, where high Rydberg states with



principal quantum numbers n>100 have become quite
common .

Many authors (e.g., [7-10]) have proposed approximate
expressions, valid only in limited ranges of n, n’/,
l, 1’. In this paper, we present a simple numerical
code, based on an earlier theoretical paper [2], for
calculating exactly the dipole integral, and
consequently the related oscillator strengths,
Einstein coefficients, and lifetimes. It is easy to
programme, even with a pocket calculator, and works
well for n and n’ as high as 1000.

2. Outline of the method

Because a,b<0, the two hypergeometric functions in
(1) are in fact two polynomials, whose degrees may be
very large, if n,n’>>1. We have found that, for many
transitions, the direct calculation of F is
problematic, as it requires a great number of
significant digits.

We use a new procedure, described in previous papers
[2,11], which allows an easy calculation of the
Gordon formula for Rydberg states as high as 1000.

It is clear from (1) that the only difficulty in
computing the radial integrals —resides in the
evaluation of the hypergeometric functions.
Fortunately, use can be made of the following
recurrence relation (see e.g. [12])

(a—c)F(a-1)=a(l-x) [F(a)—-F (a+1l) ]+ (a+bx—-c)F (a), (3)

where F (a)=F(a,b;c;x). The two adopted initial wvalues
are F(0)=1 and F(-1)=1-(b/c)x. After having
calculated the functions F in (1), the values of the
radial integral R(n,1;n’,1’) and the corresponding
oscillator strength may be obtained without
difficulty.

Since F(a,b;c;x)= F(b,a;c,x), the relation (3),
hereafter referred to as ‘a’ recurrence, may also be



used for a recurrence on b. In fact, we have found
that for large quantum numbers, 'b’ recurrence 1is
stable for 1’=1-1, and ‘a’ recurrence is stable for
1/=1++1, and the code has been constructed
accordingly.

3. Practical procedure

3.1. Calculate the parameters of F(a,b;c;x).
From (1),they are

a=-n+l+1; b=-n’+1; c=21; x=-4nn’/[n-n’]?

3.2. Calculate the two hypergeometric functions in
(1), starting from

F(0)= F(0,b;c;x)=1; F(-1)= F(-1,b;c;x)= 1-bx/c
to obtain, via(3) F(-n+1#+1).
3.3. Calculate the radial integral given by (1).

3.4. Calculate the absorption oscillator strength,
given by

f(n,1;n’,1")=(1/3) (u/Ry) [max(1,17)/(21"+1)]
[R(n,1;n’,1"]"

where Ry is the Rydberg constant, in the same units
as the frequency of the transition (n,1)-> (n’,1’).

3.5. Calculate the Einstein transition probability,
given by

A(n,1;n’,1’)=(64n"v °/3hc’) [max(1’,1)/(21+1)e°a,’
[R(n,1;n",1")]?

where h=Planck constant, c=velocity of 1light,
e=electron charge, and a,=Bohr radius.



3.6. Calculate the total Einstein coefficient, given
by

A(n,n’)= X, (21+1)/n* A(n,1;n’,1’),

from which the radiative lifetime T can be
calculated;

Tn= 1/Z’n’An,n’

4. Results and discussion

The method is very simple to programme, even with a
pocket programmable calculator. We have thus been
able to reproduce the tables published by [4], who
considered mainly principal quantum numbers n,n’=<20.
Values of R(n,1;n’,1’) may be obtained for n,n’ as
high as 1000, meeting amply the needs in studies of
high Rydberg states. It 1is easier to handle than
approximate expressions given by [8-10]. These have
only limited ranges of validity, and involve Bessel
functions [8,9] or McDonald functions [10], which,
paradoxically, appear to be more difficult to
calculate than the hypergeometric functions in our
method.

Since good accuracy has been achieved with simple
precision arithmetics, the change to a double
precision version, though easy to perform, has not
been considered necessary

Finally, it may be noted that quantum numbers close
to 1000 are not sheer curiosity, they have been
actually involved in radio recombination lines
observed in interstellar CII-HI clouds.

5. Program description
Program HEINF.f calls the subroutines faz5 and fbz5,

corresponding to the cases 1’=1+1 and 1’=1-1,
respectively.



The input data is written on the file HEIN.in,

nu= upper state principal quantum number n,

nl= lower state principal quantum number n’,

z= nuclear <charge (z= 1 for  hydrogen, 2 for
He+,etc.),

am= nuclear mass M in atomic mass units.

The output data is written to unit 5 on the file
bab.out.

Each subroutine generates the absolute value of the
dipole radial integral (ain=|R(n,1;,n’,1")]), its
square (ain2=|R(n,1;n’,1’)[|2), the absorption
oscillator strength (os= f(n’,1’;n,1)), and the
Einstein coefficient (ein= A(n,1;,n’,1’)), for the
transition (n,1)-(n’,1’). The quantity

einl=(21+1)/n? A(n,1;n’,1’),

is also calculated, in order to get the total

Einstein coefficient, A(n,n’), and the life time T,
of level n.

Appendix A
A.l. Test run input
HEIN.in

0020 0011 +1.0E+00 +1.0E+00 nu nl z am

A.2. Test run output

HEIN. out
Z= 1.0000E+00 M= 1.0000E+00
nu= 20 nl= 19

lu 11 R*%*2 f(nl,11;nu,lu) A(nu,lu;nl,11)



1 0
2 1
3 2
4 3
5 4
6 5
7 6
8 7
9 8
10 9
11 10
12 11
13 12
14 13
15 14
16 15
17 16
18 17
19 18
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12
12 13
13 14
14 15
15 16
16 17
17 18
nu= 20 nl= 19
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